A family of range restricted iterative methods for linear discrete ill-posed problems

نویسندگان

  • L. DYKES
  • L. Reichel
چکیده

The solution of large linear systems of equations with a matrix of ill-determined rank and an error-contaminated right-hand side requires the use of specially designed iterative methods in order to avoid severe error propagation. The choice of solution subspace is important for the quality of the computed approximate solution, because this solution typically is determined in a subspace of fairly small dimension. This paper presents a family of range restricted minimal residual iterative methods that modify the well-known GMRES method by allowing other initial vectors for the solution subspace. A comparison of the iterates computed by different range restricted minimal residual methods can be helpful for determining which iterates may provide accurate approximations of the desired solution. Numerical examples illustrate the competitiveness of the new methods and how iterates from different methods can be compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of iterative methods for symmetric linear discrete ill-posed problems

The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted mini...

متن کامل

Some properties of range restricted GMRES methods

The GMRES method is one of the most popular iterative schemes for the solution of large linear systems of equations with a square nonsingular matrix. GMRES-type methods also have been applied to the solution of linear discrete ill-posed problems. Computational experience indicates that for the latter problems variants of the standard GMRES method, that require the solution to live in the range ...

متن کامل

On the Choice of Subspace for Iterative Methods for Linear Discrete Ill-posed Problems

with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular values of different orders of magnitude. In particular, A is severely ill-conditioned. Some of the singular values of A may be vanishing. We allow m ≥ n or m < n. The right-hand side vector b̃ is not required to be in the range of A. Linear systems of equations of the form (1) with a matrix of ill-determined rank are ...

متن کامل

Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective

In this paper we revisit the solution of ill-posed problems by preconditioned iterative methods from a Bayesian statistical inversion perspective. After a brief review of the most popular Krylov subspace iterative methods for the solution of linear discrete illposed problems and some basic statistics results, we analyze the statistical meaning of left and right preconditioners, as well as proje...

متن کامل

FGMRES for linear discrete ill-posed problems

GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013